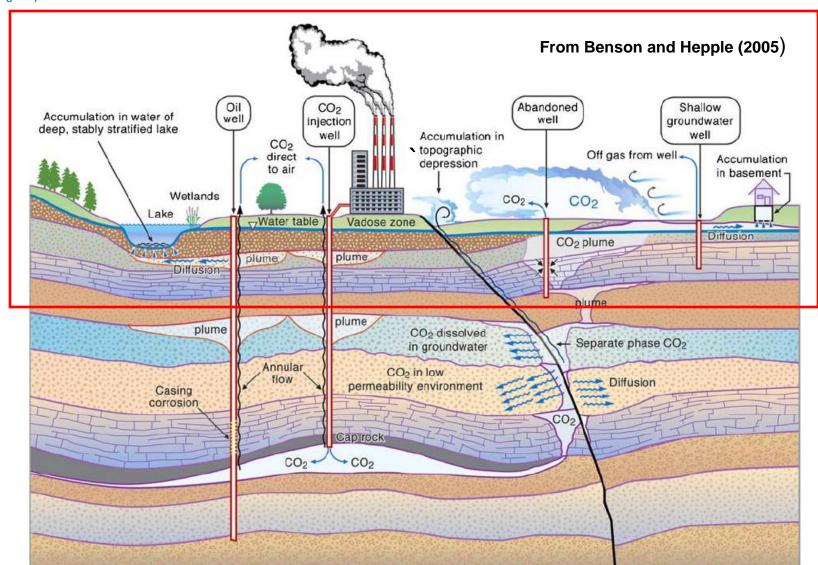


Impacts to USDWs Due to Carbon Dioxide Release from Carbon Capture and Sequestration Projects: Modeling and Experimental Studies

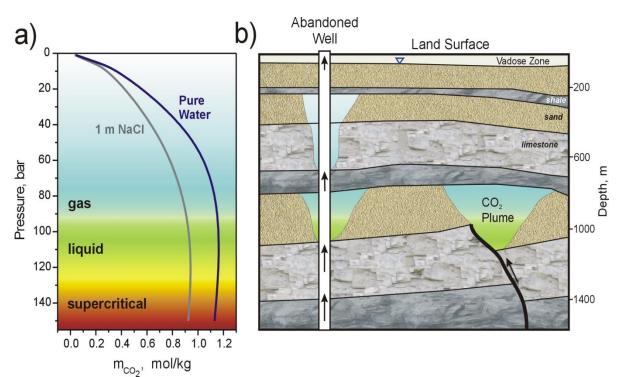
Richard T. Wilkin, Ph.D.
EPA/ORD
Ground Water and Ecosystems
Restoration Division
Ada, Oklahoma

Sunkyung Choi, Ph.D.
National Research Council
Ground Water and Ecosystems
Restoration Division
Ada, Oklahoma


ORD Research – Geologic Carbon Sequestration

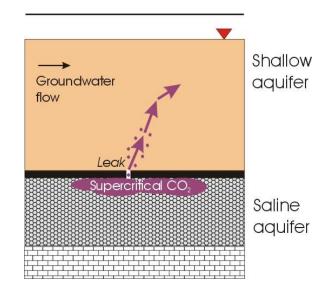
Projects Initiated Fall 2008

- Impacts to USDWs due to Carbon Dioxide Release from Geologic Sequestration Projects: Part II - Use of Soil-Gas and Ground-Water Monitoring to Detect Leakage from Plugged Abandoned Wells (Digiulio et al., NRMRL)
- Semi-analytical Models of Geologic Carbon Sequestration for Evaluation of the Area of Review, Time-Dependent Areas of Potential Corrective Action, and Leakage through Abandoned Wells (Kraemer et al., NERL)
- Impacts to USDWs due to Carbon Dioxide Release from Carbon Capture and Sequestration Projects: Part I – Geochemical Modeling and Experimental Studies (Wilkin et al., NRMRL)

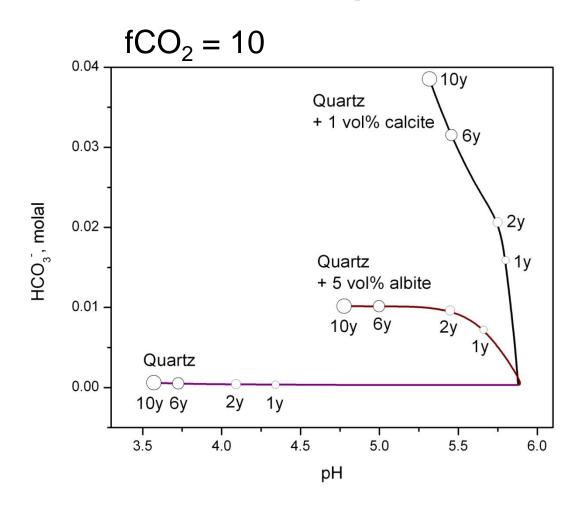


Current Research at Ada, OK Focused on Biosphere

Geochemical Problem



- Injection as supercritical fluid
- Leakage along
 T,P trajectories
- Impact of increased partial pressure of CO₂ & H₂S


1. Evaluate Impacts to USDWs due to CO_2 Release from Geologic Sequestration Projects: Modeling and Experimental Studies (Rick Wilkin and Sunkyung Choi, Ada, OK)

- pH decrease: $CO_2(g) + H_2O = H_2CO_3 = HCO_3^- + H^+$
- Trace metal solubilization
- Trace metal precipitation/sorption
- Interactions with aquifer matrix

Kinetic Modeling – Importance of Aquifer Mineralogy

- pH/bicarbonate envelopes depend on aquifer mineralogy
- Contaminant mobilization/ attenuation evaluated in context

Modeling Research Tasks

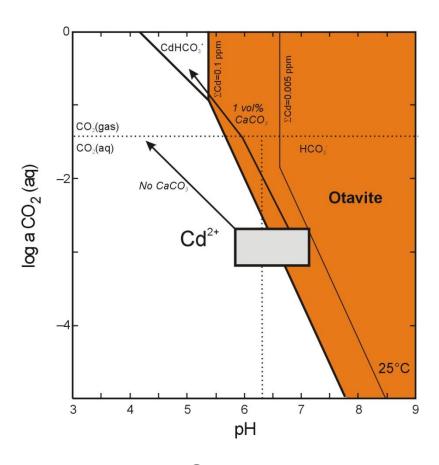
- Selection of elements
 As, Ba, Be, Cd, Cr, Cu, Hg, Pb, Sb, Se, Tl, U
- Review/Comparison of Thermodynamic Data MinteqA2, Phreeq-C, EQ3/6, other Identify data gaps, uncertainties Update with current data Interagency Agreement with LBL (started 3/2010)
- Reaction Path Models/Surface Complexation Models
- Construction of Phase Diagrams

Interagency Agreement: EPA-United States Environmental Protection Lawrence Berkeley National Laboratory

Table 1b. Solubility and ****** of Lead Carbonates and Bicarbonates and Hydroxycarbonates

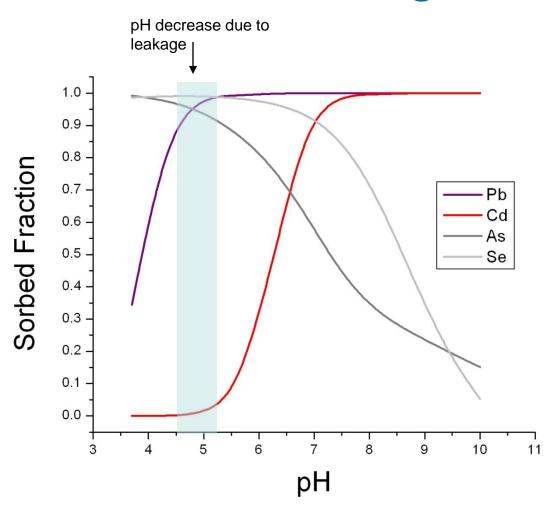
- Initiated March, 2010
- Richard Wilkin, Sean Porse (EPA); John Apps, Nic Spycher, and Jens Birkholzer (LBNL)
- Planned Research Output: *EPA* Research Brief

		
Species or reaction data for standard state conditions, 298.15 K and 1 atm	Log K	Reference
Association?		
PbCO ₃ (aq) = Pb ²⁺ + CO ₃ ²⁻	-7.24	Hem (1976)
	-6.60†	Bilinski and Schindler (1982)
	-7.14	Taylor and Lopata (1984)
$Pb(CO_3)_2^{2-} = Pb^{2+} + 2CO_3^{2-}$	-10.64	Hem (1976)
	-10.06†	Bilinski and Schindler (1982)
Solubility		
PbHCO ₃ * = Pb ^{2*} + CO ₃ 2* + H*	-13.23	Zirino and Yammamoto (1972)
PbCO ₃ (s) = Pb ²⁺ + CO ₃ ²⁻	-13.13	Hem (1976)
	-13.35†	Bilinski and Schindler (1982)
	-12.8	Wagman et al.
	-13.21	Taylor and Lopata (1984)
$Pb_3(CO_3)_2(OH)_2 + 2H^* = 3Pb^{2*} + 2CO_3^{2*} + 2H_2O$	-17.64	Taylor and Lopata (1984)
	-16.91	Mercy et al. (1998)


[†] Corrected to ionic strength = 0 using extended Debye-Huckel equation

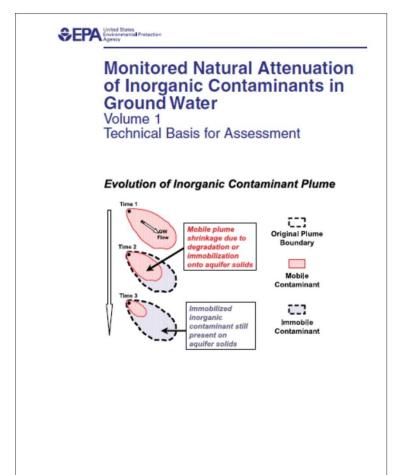
Species or reaction data for standard state conditions, 298.15 K and 1 atm	Log K	Database	
Association?			
$PbCO_3(aq) = Pb^{2+} + CO_3^{2-}$	-6.53	MinteqA2	
	-7.24	Wateq4f	
	-6.58	V8.R6+	
Pb(CO ₃) ₂ ² = Pb ^{2s} + 2CO ₃ ²	-9.94	MinteqA2	
	-10.64	Wateq4f	
	-9.40	V8.R6+	
PbHCO ₃ * = Pb ^{2*} + CO ₃ ²⁻ + H*	-13.23	MinteqA2	
	-13.36	Wateq4f	
		V8.R6+	
PbCO ₃ (s) = Pb ²⁺ + CO ₃ ²⁻	-13.39	MinteqA2	
	-13.29	Wateq4f	
	-13.54	V8.R6+	
$Pb_3(CO_3)_2(OH)_2 + 2H^* = 3Pb^{2+} + 2CO_3^{2-} + 2H_2O$	-18.76	MinteqA2	
	-17.46	Wateq4f	
	-18.81	V8.R6+	

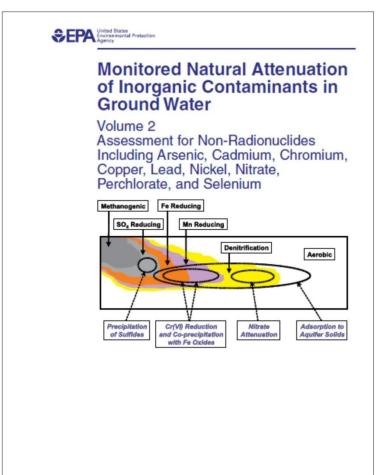
Metal Solubility System: Me-CO₂-H₂O



Lead

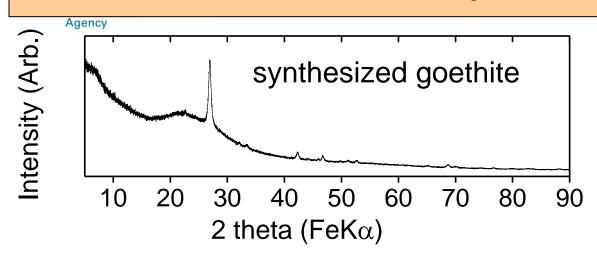
Cadmium


Surface Complexation Modeling



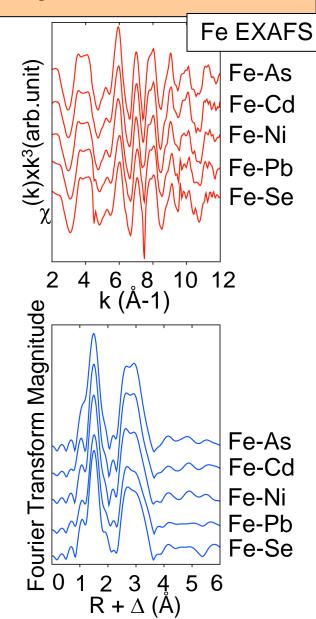
- Goethite 1 g/L
 0.005 M NaCl, 2 ppm Me
- Cd expected to be mobile at pH<5.5
- Pb, anions immobile
- As issues

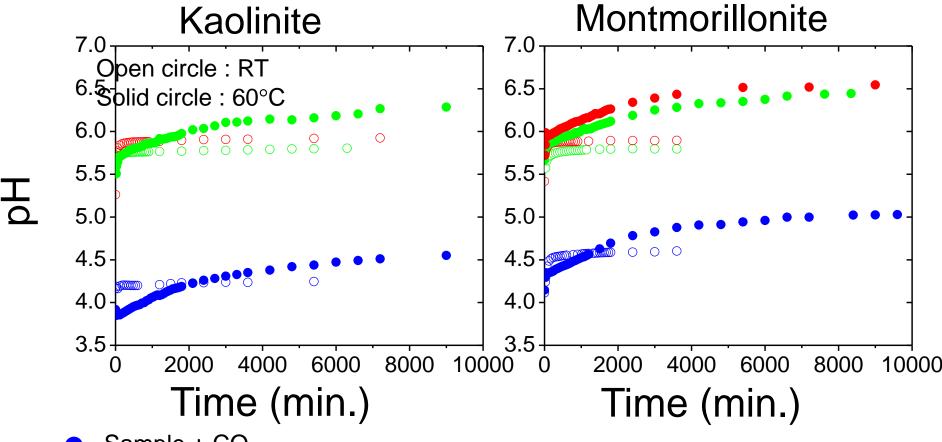
Recent EPA Reports on Monitored Natural Attenuation of Inorganics



Evaluate Impacts to USDWs due to Carbon Dioxide Release from Geologic Sequestration Projects: Modeling and Experimental Studies

- Conduct column and batch-scale studies from formation (USDW) samples collected from test sites.
- Examine and simulate element partitioning and associated kinetics between selected minerals and aqueous phase over a range of CO₂ and H₂S partial pressures.
- Use results to develop sampling strategies for a controlled CO₂ injection field study.


Short-term adsorption experiments


- Material: synthesized goethite
- As, Pb, Cd, Ni and Se = [10⁻³] M
- 1day at RT (0.005M NaCI),
- CO_{2(q)} with or without

Analysis in process: Wet chemistry (ICP/MS) Spectroscopy (Fe and As EXAFS)

pH changes after 1 day reaction

- Sample + CO₂
- Sample + 0.1g CaCO₃+CO₂
 - Sample + 0.2g CaCO $_3$ +CO $_2$

Background solution: 0.05M NaCl

Ongoing experiments: short and long-term

Environmental Protection

Specimen clays (1:1 and 2:1), synthetic goethite, metalsubstituted (Cd, Ni, Cr) goethite, albite, anorthite and quartz

Background solution: 0.05M NaCl, MgCl₂

Contaminants: As, Pb, Cd, Ni and Se (conc.: 1~3 x10⁻³M)

Temperature (RT, 60°C), with or without CO_{2(a)}, and CaCO₃

Reacted for 1, 7, 30, 90 and 180days

solid:solution=1:50

Uptake/precipiate reaction

Reacted solutions

ICPMS/OES: As, Pb, Cd, Ni, Se, Al, Si, Fe, Ca

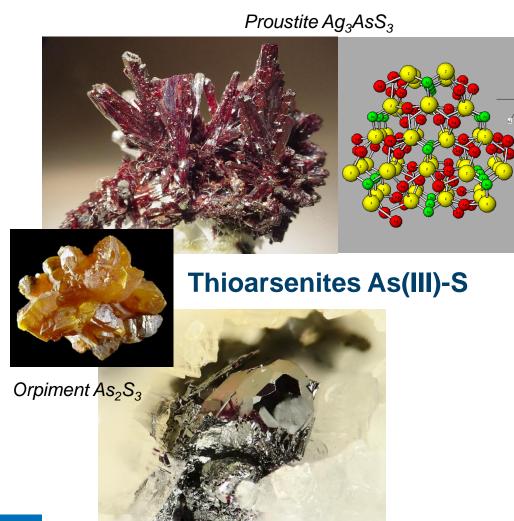
TIC, pH, specific conductivity

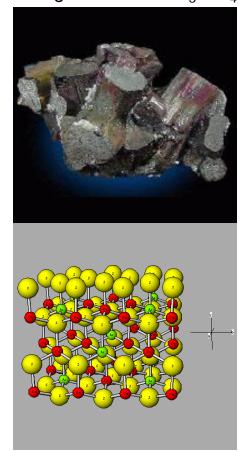
Reacted solids

XRD, SEM/EDS, HRTEM/EDS, TG/MS, FTIR, BET, Mössbauer Spectroscopy, XAS (As, Fe, Cd, Pb, Cd, Ni and Se) and micro-XAS, XRD and XRF (at APS)

Release reaction

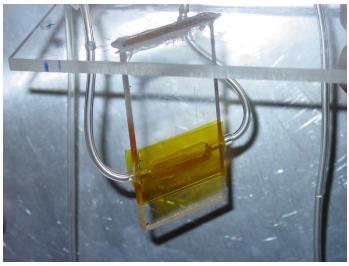
Mg(NO₃)₂ extraction


NH₄-oxalate extraction


Reacted solution and solution analysis

Behavior of H₂S as a co-injectate: Interactions with Arsenic

Enargite/Luzonite Cu₃AsS₄



Thioarsenates As(V)-S

X-ray Absorption Spectroscopy for Aqueous Species: Data Collection

- XANES and EXAFS scans for oxidation state and bonding environment of As
- Arsenic mobilization potential can be increased in the presence of free sulfide



HPLC-ICP-MS: Sulfide Titration

Results

Traditional Role of ORD in Regulatory Programs (e.g., CERCLA, RCRA, and UST)

- Assistance to program offices in rule making and development of guidance
- Internal and External (e.g., grants) Research
- Technical assistance to EPA regional offices and States

Internal Research Technical Assistance